Showing posts with label teaching. Show all posts
Showing posts with label teaching. Show all posts

Sunday, September 25, 2016

5 Takeaways from a Symposium on Effective Teaching



As a postdoc with keen interest in teaching, I attended the Symposium for Effective Teaching and Learning in the Sciences, 1 September 2016, at University of Ontario Institute of Technology (UOIT). The speakers were experienced educators in various sciences -- physics, chemistry, biology, mathematics, forensic science, computer science, among others. Added to my inexperience as a teacher, I was perhaps the only engineer in a room of scientists. However, with plans to offer some courses in coming terms, I brushed aside any concerns and went on to glean some handy tips from the seasoned teachers.


1. Apply your research skills to teaching

Keynote speaker, Dr. Simon Bates points out that collaboration and experimentation is something we do as researchers, not so much as educators. That needs to change if you want to become a better educator. You need not create all the course content on your own. There is plenty of good quality, open, free content created by others available on the internet. You can save a lot of hours, for yourself and for your students, by curating and separating the good content from the not-so-good.

Traditionally, teachers have despised gadgets in class. However, experimenting with use of new technology in teaching is worth a try because the next generation is most at ease with tech. E.g. It is possible to get instantaneous feedback from students at mid-course stage, not merely at end-of-course. In one of his courses, Dr. Bates garnered 8000 words of feedback in 3 minutes via smartphones. On similar lines, senior lecturer Kimberley Nugent demonstrated live polling for multiple-choice questions in class using Socrative. Other approaches to explore are - encouraging students to come up with test questions, gamification of learning, various other active learning techniques. But how do we accommodate all these new methods in the limited lecture hours? Therein comes your own judgment on how to ration time. In extenuating circumstances, it may be required to cut some content. As Walter Lewin would say, “What counts is not what you cover, but what you uncover.”

2. Don't settle merely at being a good lecturer

Dr. Rupinder Brar, a TVO Best Lecturer awardee, identifies that a good lecturer isn't necessarily a good educator. Making use of results from educational research and even conducting educational research take a lecturer closer to being a effective educator. There are specific grants available for carrying out such research. E.g. Teaching Innovation Fund at UOIT. Several good lecturing practices, live demonstrations for instance, are great for capturing students' attention. However, engagement happens to be only a necessary, not sufficient, condition for learning. Dr. Joseph MacMillan explains, “In-class demos work if done using predict-observe-discuss (POD) method. Else only entertainment, no learning.”
 
3. Get off the podium

Dr. Yuri Bolshan asserts it's important to make students solve problems in classroom, individually and in groups. While they're at it, get off the podium, move around in the class, interact with students, help them out. Talk to about 2-5 students per problem. Any more, and you're left with little time to lecture. Counter-intuitively, this method can actually reduce Professor Fear as the students notice you're only trying to help.

4. Try Slack

Dr. Jeremy Bradbury proposes that Slack, a team-messaging app popular in the industry, can be put to good use in classrooms. Compared to conventional learning management systems like Blackboard (Bb), Slack can offer orders of magnitude higher student engagement. E.g. 130 messages on Bb versus 10,000 messages on Slack over a completed course involving 70 students. It is faster than email, and students like it when personal (Facebook, Twitter) and professional (Slack) stuff are kept separate.

5. Create training videos

Master lecturer in mathematics, Ilona Kletskin advocates creating training videos of any procedural stuff such as worked out examples. This also resonates with the engineering ethos to automate the repetitive stuff. I should probably start with some training videos of how to use and configure lab equipment for the grad students in our research group. 

Do you use any of these methods in your teaching? May be you have some tried and tested techniques of your own. Please do share. I'm all ears.

Sunday, September 27, 2015

Why I constructed a timeline of physicists



In a TED interview, notable inventor and entrepreneur Elon Musk was asked about his secret behind being able to address diverse technological problems, from sustainable energy to space exploration. His answer can be paraphrased in two words, "Study physics." That's how important physics is. Even sciences like chemistry and biology, and most of engineering, are higher abstractions of underlying physics. It is the foundation on which all of science and technology, and hence all of society rests.   

Isaac Newton once said, "If I have seen further it is by standing on the shoulders of giants." He wasn't just being humble, he was being frank. In physics, as it is with all fields of human thought, the birth of every great idea happened in an environment of ideas that preceded it. At times, one scientist proposed a revolutionary idea that was completely at odds with the prevailing thought. At other times, a particular set of ideas facilitated a natural progression towards another set of ideas irrespective of the individuals involved so long as people were working on it.

To get a panoramic picture of the evolution of ideas in physics, I constructed a visual timeline titled '500 Years of Physics' (see tweet above). I hope teachers, students and enthusiasts of physics find it useful. Updated PNG and PDF versions of the file are now available and I intend to keep updating and enhancing the list.

The timeline consists of people who made key contributions in fundamental and applied physics. Each one on the chronological list is associated with certain key ideas, theories, and/or experiments. Not everyone on the list was a physicist, but all of them made significant contributions to the collective enterprise called physics. Each horizontal bar starts at the birth year of the corresponding personality, and ends at his/her year of demise. The list gives an idea of contemporaries and forerunners -- who came before or after whom, who worked with whom.

Reading physics from a textbook creates an illusion of a level field; everything -- all the laws, the equations, the theories -- comes on a platter. All the struggle behind, the times elapsed and the environment within which the ideas sprang up are hidden from the students. Superimposing other historical timelines on top of this timeline puts those struggles in perspective and will hopefully help reveal some of the stories behind the science. If you love physics, take a printout of the timeline and pin it near your work desk!

Wednesday, September 15, 2010

The Art of Teaching

Much of our competence, and for that matter even the interest we have, in a subject is down to how well we were taught that subject. A good teacher has a profound influence on the capabilities and performance of his pupils in life. Science and engineering education is no exception. With my sights set on taking up teaching and research as a career, I'm always impressed when I come across someone who is exceptional and creative in his pedagogical methods. 

Recently, thanks to YouTube, I stumbled upon a few lectures from one such gifted teacher, Professor Walter Lewin, who teaches Physics at MIT. His methods are truly worth emulating as the following video would testify.


With several universities across the world opening up their lecture halls to the world, by providing free access to recorded lectures, the enthusiastic student of today has an invaluable resource to tap from.

Here are a few such links from generous universities: